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Mean-Reverting Prices
Many asset prices exhibit mean reversion, such as stocks, commodities,
volatility index, ETFs, fixed-income funds, etc.

Figure: Vanguard REIT ETF (VNQ), Jan 2017 – Jan 2018.
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Mean-Reverting Prices
Mean reversion in a single asset tends to break down over the long term.

Figure: Vanguard REIT ETF (VNQ), Jan 2017 – Aug 10 2020.
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Pairs Trading

Pairs Trading has been widely used in industry for decades.

Fund managers often attempt to construct mean-reverting prices via pairs
trading.

Traditional approach involves
I finding stocks from the same industry/sector
I computing correlations among assets
I understanding the economic relationship between assets

Examples:
I GC, C, JPM, BAC, ... (banks)
I ORCL, CSCO, ... (tech)
I GC, SI (gold & silver futures)
I BTC, ETH, LTC, BCH, ... (cryptos)
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ETFs Pairs

The proliferation of exchange-traded funds (ETFs) has facilitated pairs
trading.

ETFs, which traded on exchanges like stocks, are typically designed to track
identical or similar indices/assets.

Examples:
I SPY, IVV, VOO (track S&P 500)
I XLF, FNCL, VFH (financial sector)
I FXI, VWO, EEM (emerging markets)
I GLD, GDX, GDXJ (gold spot & miners)
I GLD, SLV (gold & silver)
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Pairs Trading Example
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Mean-Reverting Model

Ornstein-Uhlenbeck (OU)

dXt = µ(θ −Xt) dt+ σ dBt,

where θ ∈ R is the long-run mean, µ > 0 is the speed of mean-reversion, and
σ > 0 is the volatility parameter.
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Figure: Simulated sample paths of OU processes with different initial values: (green) X0 = 1, (red)
X0 = 0, (blue) X0 = −1. Parameters: θ = 0, µ = 5, σ = 0.5.
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Mean-Reverting Models

Ornstein-Uhlenbeck (OU)

dXt = µ(θ −Xt) dt+ σ dBt,

with parameters µ, σ > 0, θ ∈ R.

Exponential OU (XOU)

ξt = eXt ,

where X is the OU process.

Cox-Ingorsoll-Ross (CIR)

dYt = µ(θ − Yt) dt+ σ
√
Yt dBt, Y0 = y ≥ 0,

with constants µ, θ, σ > 0.
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Pairs Trading Example
Construct a static portfolio in 2 risky assets, with portfolio value

Xα,β
t = αS

(1)
t − βS

(2)
t .

Under the OU model, the conditional probability density is
fOU (xi|xi−1; θ, µ, σ)

=
1√

2πσ̃2
exp

(
− (xi − xi−1e

−µ∆t − θ(1− e−µ∆t))2

2σ̃2

)
,

where σ̃2 = σ2 1−e−2µ∆t

2µ .
With observed values (xα,βi )i=0,1,...,n, maximize the average log-likelihood

`(θ, µ, σ|xα,β0 , xα,β1 , . . . , xα,βn )

= −1

2
ln(2π)− ln(σ̃)− 1

2nσ̃2

n∑
i=1

[xα,βi − xα,βi−1e
−µ∆t − θ(1− e−µ∆t)]2.

For any α, find the strategy (α, β∗) and para. (θ∗, µ∗, σ∗) from

max
β,(θ,µ,σ)

`(θ, µ, σ|xα,β0 , xα,β1 , . . . , xα,βn ).
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Optimal Pairs
The optimal parameters maximize the average log-likelihood. To express
them, we define

Xx =

n∑
i=1

xα,βi−1, Xy =

n∑
i=1

xα,βi ,

Xxx =

n∑
i=1

(xα,βi−1)2, Xyy =

n∑
i=1

(xα,βi )2 Xxy =

n∑
i=1

xα,βi−1x
α,β
i , .

The optimal parameter estimates under the OU model are given explicitly by

θ∗ =
XyXxx −XxXxy

n(Xxx −Xxy)− (X2
x −XxXy)

,

µ∗ =− 1

∆t
ln
Xxy − θ∗Xx − θ∗Xy + n(θ∗)2

Xxx − 2θ∗Xx + n(θ∗)2
,

(σ∗)2 =
2µ∗

n(1− e−2µ∗∆t)
(Xyy − 2e−µ

∗∆tXxy + e−2µ∗∆tXxx

− 2θ∗(1− e−µ
∗∆t)(Xy − e−µ

∗∆tXx) + n(θ∗)2(1− e−µ
∗∆t)2).
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Optimal Portfolio

In turn, we denote by ˆ̀(θ∗, µ∗, σ∗) the maximized average log-likelihood.

For any α, we choose the portfolio (α, β∗), where

β∗ = argmax
β

ˆ̀(θ∗, µ∗, σ∗|xα,β0 , xα,β1 , . . . , xα,βn ).

For example, suppose we invest A dollar(s) in asset S(1), so we long

α = A/S
(1)
0 shares. At the same time, we short β = B/S

(2)
0 shares in S(2),

for B/A = 0.001, 0.002, . . . , 1.

The sign of the initial portfolio value equals to the sign of the difference
A−B. Without loss of generality, we set A = 1.
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Optimal Pairs
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Figure: (left) Average log-likelihood ˆ̀ vs cash amount in asset S(2) B := βS
(2)
0 .

(right) Historical portfolio price paths: (i) +$1 GLD and −$0.454 GDX, (ii) +$1 GLD

and −$0.493 SLV. Note: α = 1/S
(1)
0 .
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Estimated Parameters

Price θ̂ µ̂ σ̂ ˆ̀

GLD-GDX
empirical 0.5388 16.6677 0.1599 3.2117
simulated 0.5425 14.3893 0.1727 3.1304

GLD-SLV
empirical 0.5680 33.4593 0.1384 3.3882
simulated 0.5629 28.8548 0.1370 3.3898

Table: MLE estimates of OU process parameters using historical prices of GLD, GDX,
and SLV from August 2011 to May 2012. The portfolio consists of $1 in GLD and
-$0.454 in GDX (resp. -$0.493 in SLV). For each pair, the second row (simulated) shows
the MLE parameter estimates based on a simulated price path corresponding to the
estimated parameters from the first row (empirical).

Python package: https://mlfinlab.readthedocs.io/en/latest/optimal_

mean_reversion/ou_model.html

Tim Leung Mean Reverting Portfolios

https://mlfinlab.readthedocs.io/en/latest/optimal_mean_reversion/ou_model.html
https://mlfinlab.readthedocs.io/en/latest/optimal_mean_reversion/ou_model.html


14 / 33

Machine Learning Approach
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Machine Learning Algo for MR Portfolios

Scalability: Process more asset prices and identify more price patterns to
discover trading opportunities

Speed: Faster computation of optimal strategies, and faster execution

Adaptability: Actively monitor performance and risk of strategies, adapting
to live market conditions and price movements, to control exposure.

Potential: more profits and lower cost

Tim Leung Mean Reverting Portfolios
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Problem Statement

Observations from previous approach:

Pairs are pre-selected

Limited to two assets, and must trade both assets (pairs trading)

Parameters estimation is uncontrained

New objective: Given a set of m assets and their historical prices
S ∈ R(T+1)×m, design a portfolio that

automatically selects from m ≥ 2 assets (larger collection)

but also prefers portfolios with fewer assets (parsimonious/sparse)

is well-represented by an Ornstein-Uhlenbeck process (via MLE)

but also controls the speed of mean reversion

Tim Leung Mean Reverting Portfolios



17 / 33

OU-MLE

An OU process is defined by the SDE

dxt = µ(θ − xt)dt+ σdBt.

where

µ can be interpreted as speed of mean reversion,

σ as level of volatility,

θ as mean of xt.

The likelihood of an OU process observed over a sequence {xt}Tt=1 is given by

T∏
t=1

1√
2πσ̃2

exp

(
−xt − xt−1 exp(−∆tµ)− θ(1− exp(−∆tµ))2

2σ̃2

)

where σ̃2 = σ2 1−exp(−∆tµ)
2µ .

Tim Leung Mean Reverting Portfolios
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Optimization (Minimization) Problem

Let S be a T + 1×m matrix of asset prices, and w ∈ Rm be a vector of
portfolio weights.

Portfolio value times series: x = Sw.

Minimizing the negative log likelihood with x = Sw yields

min
µ,σ2,θ,w

1

2
ln(2π) +

1

2
ln(σ̃2(µ, σ2)) +

‖A(µ)w − θ(1− exp(−∆tµ))1‖2

2T σ̃2(µ, σ2)
,

with A = S1:T − exp(−∆tµ)S0:T−1, where the subscripts denote ranges for t.

We can also limit the no. of assets, and find the best basket size.
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19 / 33

Portfolio Weights Constraint

Recall the function

1

2
ln(σ̃2(µ, σ2)) +

‖A(µ)w − θ(1− exp(−∆tµ))1‖2

2T σ̃2(µ, σ2)

where σ̃2 = σ2 1−exp(−∆tµ)2

2µ .

If we set θ = 0, w = ~0, the second term disappears. Then the function value
becomes unbounded if we take σ2 → 0.

Hence we add a constraint ‖w‖1 = 1 to avoid unboundedness.

Tim Leung Mean Reverting Portfolios



20 / 33

Re-writing the Problem

With a change of variables let

a = σ̃2 =
σ2(1− exp(−2∆tµ))

2µ
,

c = exp(−∆tµ),

then the problem can be written more compactly as

min
a,c,θ,‖w‖1=1

1

2
ln(a) +

1

2Ta
‖A(c)w − θ(1− c)‖2.

Tim Leung Mean Reverting Portfolios
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Penalized MLE with Constraints

We further included two terms in the objective function

min
a,c,θ,‖w‖1=1,‖w‖0≤η

1

2
ln(a) +

1

2Ta
‖A(c)w − θ(1− c)‖2 + γc

‖w‖0 ≤ η controls the total number of assets chosen for the portfolio. The
total no. of assets used is capped at η (e.g. η = 2, 4, or 6).

γc affects the mean-reverting speed of fitted OU-process via c = exp(−∆tµ).
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Algorithm

Our strategy is to first use variable projection as follows:

f(w, a, c, θ) =
ln(a)

2
+ γc+

‖A(c)w − θ(1− c)‖2

2Ta
f1(w, a, c) = min

θ
f(w, a, c, θ)

f2(w, a) = min
c
f1(w, a, c) = min

c,θ
f(w, a, c, θ)

f3(w) = min
a
f2(w, a) = min

a,c,θ
f(w, a, c, θ).

and then use projected gradient descent to solve

min
‖w‖1=1,‖w‖0≤η

f3(w).

Remark: f3(w) is nonconvex and the constraints are also nonconvex.
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Algorithm
If we wish to use gradient descent to iterate, but it’s possible that wi+1 is
outside the feasible region W. In the projected gradient descent, we simply
choose the point nearest to wi+1 in the set W.

Once we obtain f3(w), we would like to know the projection onto
W := {z : ‖z‖1 = 1, ‖z‖0 ≤ η} to implement projected gradient descent.

ProjW(w)← argmin‖z‖1=1,‖z‖0≤η‖w − z‖
2

Tim Leung Mean Reverting Portfolios
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Algorithm

Figure: Objective function value’s rate of decrease for our Algorithm. Rate of
convergence of gradient descent is sublinear at O(1/k), with k = iterations.
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Numerical results on real data

We performed experiments using closing stock prices during 2013-2018 from 3
groups of assets:

Precious Metals: GLD, GDX, GDXJ, SLV, GG, ABX

Large Capital Equities: GOOG, JNJ, NKE, MCD, SBUX, SPY, VIG, VO

Oil Companies: BP, COP, CVX, OIL, USO, VLO, XOM
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Numerical results on real data
Precious Metals (6 assets): GLD, GDX, GDXJ, SLV, GG, ABX

η Selected Assets

2 GLD -0.17, SLV 0.83
4 GLD -0.08, GDX -0.21, SLV 0.44, ABX 0.27
6 GLD -0.07, GDX -0.29, GDXJ 0.03 SLV 0.30 GG 0.10 ABX 0.21

Large Cap (8 assets): GOOG, JNJ, NKE, MCD, SBUX, SPY, VIG, VO

η Selected Assets

2 NKE -0.49, SBUX 0.51
4 JNJ -0.12 NKE -0.36, MCD -0.11, SBUX 0.41
6 JNJ -0.10, NKE -0.27, MCD -0.07, SBUX 0.36, SPY 0.12, VO -0.08

Energy (7 assets): BP, COP, CVX, OIL, USO, VLO, XOM

η Selected Assets

2 OIL -0.59, USO 0.41
4 COP -0.01, CVX -0.02, OIL -0.57 USO 0.41
6 BP -0.01 COP -0.01, CVX -0.01, OIL -0.57, USO 0.41, VLO 0.002
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Numerical results on real data: pair in Large capital
equities

Table: Left: pair of assets and portfolio; right: zoomed-in portfolio
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Numerical results on real data

Oil Companies: BP, COP, CVX, OIL, USO, VLO, XOM

Table: Left: all assets and portfolio; right: zoomed-in portfolio
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Portfolio Weights and Log-Likelihoods

Figure: Negative log-likelihood (nll) of assets groups for η ∈ {2, 4, 6} and γ = 0. The
bottom row shows the (training, testing) nll of our optimal portfolios.
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Machine Learning Algo for MR Portfolios

Scalability: Process more asset prices and identify more price patterns to
discover trading opportunities

Speed: Faster computation of optimal strategies, and faster execution

Adaptability: Actively monitor performance and risk of strategies, adapting to
live market conditions and price movements, to control exposure.

Potential: more profits and lower cost
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Thank you!
http://faculty.washington.edu/timleung/
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