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The Oldest Problem in Finance



Problem Solved Already!



The Second-Oldest Problem in Finance



Journal of Finance (1952)
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Markowitz: Theory vs. Practice

Markowitz (1952, JF) solved the problem of portfolio selection in theory.

His formulas use two inputs:

(i) the vector of means and

(ii) the covariance matrix

of the relevant asset returns.

In practice, these inputs are unknown and have to be estimated from data.

This problem has been

a source of great frustration to portfolio managers

a source of great (paper) creation to academic researchers



Markowitz: Early Days

Early practice:

Estimate the two inputs by their sample counterparts

These estimators are unbiased and MLEs under normality

Early critics:

Jobson and Korkie (1980, JASA), Michaud (1989, FAJ), and Chopra

and Ziemba (1993, JPM), among others, showed that

this practice leads to unstable and underdiversified portfolios

Therefore, such portfolios have poor out-of-sample performance

Michaud (1989, FAJ) coined the term “estimation error maximizers”.

This is because Markowitz portfolios favor assets with

large estimated means

negative estimated covariances

small estimated variances



Markowitz: Estimation Error Maximization

Vector of means:

Financial returns are notoriously noisy

Thus, sample means are very unreliable

Covariance matrix:

Often the number of assets is comparable to the sample size

In such a case, the sample covariance matrix is ill-conditioned

This is a major reason for unstable portfolios, since the Markowitz

formulas use the inverse of the covariance matrix

Example: 5 years of daily data on the Russell 1000

Sample size: T ≈ 1, 260 days

Dimension: N = 1, 000 stocks



Vector of Means

Harvey, Liu, and Zhu (2016, RFS)
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Line of Attack

Find a covariance matrix estimator that is optimal in a stylized setting

of the Markowitz portfolio selection problem.

Key: Dimension of the space of candidate estimators

= Degrees of freedom

= Number of parameters to be estimated jointly

=⇒ Classification of the relevant literature.
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Early Days: O(N2)

Estimator: sample covariance matrix.

Number of free parameters: N(N + 1)/2.

Seemed like a good idea:

Unbiased estimator

Maximum likelihood estimator (under normality)

Sad reality:

Leads to unstable and underdiversified portfolios

Such portfolios have poor out-of-sample properties

Unless N ≪ T :

Sample covariance matrix is ill-conditioned

Too much estimation error

Fact: O(N2) is too big.



Extremist Reaction: O(0)

‘Estimator’: identity covariance matrix.

That is, do not estimate the covariance matrix at all!

Promoters:

Fama and French (1993, JF): sort into deciles

DeMiguel, Garlappi, and Uppal (2009, RFS) additionally abstain

from the estimation of the vector of means: 1/N portfolio

Brandt, Santa-Clara, and Valkanov (2009, RFS):

portfolio spanned by vector(s) of means

Fact: O(0) can be less bad than O(N2) but is too small.



Former State of the Art: O(1)

Synthesis of the first two approaches: linear shrinkage.

Estimator: convex combination of

sample covariance matrix

(multiple of the) identity matrix: shrinkage target

Proposed by Ledoit and Wolf (2004, JMVA).

Only one parameter:

Shrinkage intensity (weight of the shrinkage target)

Linear shrinkage can be adapted to alternative shrinkage targets:

Single-factor model, as in Ledoit and Wolf (2003, JEF)

Constant-correlation model, as in Ledoit and Wolf (2004, JPM)

Fact: O(1) is better than both O(0) and O(N2).



Alternative O(1) Methods

DeMiguel, Garlappi, Nogales, and Uppal (2009, MS):

Norm-constrained portfolios

Only for global mininum variance portfolio

Needs cross validation

Beats LW only in 1 out of 5 data sets

Frahm and Memmel (2010, JoE):

Shrink portfolio weights to 1/N

Only for global mininum variance portfolio

Kan and Zhou (2007, JFQA):

Weighted combination of sample portfolios with riskfree rate

Tu and Zhou (2011, JFE):

Weighted combination of various portfolios with 1/N

The last three proposals assume normality, do not work for N > T ,

and do not compare to LW.



The Big Picture

Tried so far:

O(0): passable

O(1): former state of the art

O(N2): does not work, unless N ≪ T

. . . anything missing?



Not Yet Tried: O(N)

Realization:

Only (obvious) dimension that has not been tried yet

Only chance to beat the former state-of-the-art O(1)

But mathematically more challenging

Key insight:

Optimal estimator in N -dimensional space should beat optimal

estimator in 1- or 2-dimensional space (under nesting)

Have to able to squash estimation error to obtain a consistent estimator



Goldilocks & the Three Bears



Goldilocks & Covariance Matrix Estimation

O(0) and even O(1) are too small due to misspecification error.

O(N) is just right: largest number of free parameters that can be estimated

consistently when N ≈ T .

O(N2) is too big due to estimation error.



Goldilocks Payoff

Contributions relative to the O(1) proposal of LW (2004, JMVA):

1. Search for optimal estimator in a much broader candidate space

2. Use an objective function that is tailor made for portfolio selection

(instead of generic mean squared error)

3. Resulting portfolios have better out-of-sample properties

(as demonstrated in Ledoit and Wolf (2017, RFS))
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Starting Point

N denotes the number of assets and T denotes the sample size.

The sample covariance matrix ST admits a spectral decomposition

ST = UTΛTU
′

T

Here:

UT is an orthogonal matrix whose columns are

the sample eigenvectors (uT,1, . . . , uT,N )

ΛT is a diagonal matrix whose diagonal entries are

the sample eigenvalues (λT,1, . . . , λT,N )



Class of Estimators

Rotation Equivariance

Observed T ×N data matrix: YT

W is an N -dimensional orthogonal / rotation matrix

Σ̂T
..= Σ̂T (YT ) is a generic estimator of ΣT

It is rotation-equivariant if Σ̂T (YTW ) = W ′Σ̂T (YT )W

Without specific knowledge about ΣT , rotation equivariance

is a desirable property of an estimator.

We use the following class of rotation-equivariant estimators going back to

Stein (1975, 1986).

Σ̂T
..= UTDTU

′

T where DT
..= Diag(dT,1, . . . , dT,N ) is diagonal

This is a class of dimension N .



Rotation-Equivariant Estimators

Generic estimator in the class Σ̂T
..= UTDTU

′

T .

Keep the sample eigenvectors.

Shrink the N sample eigenvalues individually:

DT
..= Diag(dT (λT,1), . . . , dT (λT,N ))

Based on nonlinear shrinkage function dT : R → R+

LW (2004, JMVA) only consider linear shrinkage function dT .

Assumptions:

The shrinkage function may be stochastic through dependence

on the sample covariance matrix ST

It converges to a non-stochastic limiting shrinkage function d
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Tailor-Made Loss Function

Mininum Variance Loss Function:

LMV

(
Σ̂T ,ΣT

)
..=

Tr
(
Σ̂−1

T ΣT Σ̂
−1

T

)/
N

[
Tr
(
Σ̂−1

T

)/
N
]2 −

1

Tr
(
Σ−1

T

)
/N

Roughly speaking, LMV represents the true variance of the portfolio with the

minimum estimated variance, after suitable normalization.



Feasible Estimator

We use tools from random matrix theory and assume:

N/T → c ∈ (0,∞), as T → ∞

Data are independent and identically distributed (i.i.d.)

Moment an distribution conditions

Conditions on the eigenvalues of the true covariance matrix

Then:

LMV(Σ̂T ,ΣT ) is non-stochastic in the limit

Minimize the limiting expression with respect to d

The optimal d, denoted by do, is an oracle

(meaning it depends on unknown population quantities)

Construct a consistent estimator of do, denoted by d̂o
T

Feasible Nonlinear Shrinkage Estimator:

So
T

..= UT D̂
o
TU

′

T with D̂o
T

..= Diag
(
d̂o
T (λT,1), . . . , d̂

o
T (λT,N )

)



Related Method: Eigenvalue Cleaning

A popular method used by practitioners is eigenvalue cleaning:

Leave the large eigenvalues (“the signal”) unchanged

Make all the small eigenvalues (“the noise”) equal to their average

Usually based on the correlation matrix

Also called eigenvalue denoising

Remarks:

This is a reasonable ad hoc method, but it is not optimal

Large eigenvalues need to be adjusted too

(though differently from linear shrinkage)

Small eigenvalues should not be (exactly) equalized



Si Tacuisses, Philosophus Mansisses

A typical unwarranted claim from the machine learning crowd:



Linear vs. Nonlinear Shrinkage (N = 500 stocks)
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The Importance of Good Forecasts

Good forecasts of time-varying objects can make the difference

between life and death.

Here is a weather-related example from the movie Sharknado 2:



The Importance of Good Forecasts

Good forecasts of time-varying objects can make the difference

between life and death.

Here is a weather-related example from the movie Sharknado 2:

We now turn to forecasts of time-varying covariance matrices.



Motivation and Problem

Stylized fact:

Asset returns often exhibit co-volatility clustering,

at least at shorter frequencies, and are thus not i.i.d.

Common approach:

Use a multivariate GARCH model to capture this effect

Problem:

Such models suffer from the curse of dimensionality

Applications are generally limited to N ≤ 100 assets



DCC-NL Model

Univariate volatilities governed by a GARCH(1,1) process:

d2i,t = ωi + air
2
i,t−1 + bid

2
i,t−1

DCC model of Engle (2002, JBES) with correlation targeting:

Qt = (1 − α− β)C + α st−1s
′

t−1 + β Qt−1 (1)

where si,t ..= ri,t/di,t, st ..= (s1,t, . . . , sN,t)
′ and C ..= Cov(st).

Conditional correlation and covariance matrices then:

Rt
..= Diag(Qt)

−1/2Qt Diag(Qt)
−1/2

Ht
..= DtRtDt

with rt|Ft−1 ∼ N (0, Ht).

Key: Use nonlinear shrinkage to estimate the targeting matrix C in (1).

=⇒ DCC-NL model of Engle, Ledoit, and Wolf (2019, JFEC)
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Motivation & Problem

Stylized fact:

Asset returns follow (more or less) a factor model

Examples: CAPM, APT, and Fama-French factor models

Common approach:

Use a structured estimator of the covariance matrix

that is ‘implied’ by the assumed factor model

Problem:

Which and how many factors to use?

What if the factor model is misspecified?



Model and Implied Covariance Matrix

A factor model assumes that

ri,t = αi + β′

ift + ui,t with E(ui,t|ft) = 0 ,

where

ft ∈ R
K is a vector of factor returns

αi is an intercept and βi ∈ R
K is a vector of factor loadings

Implied Covariance Matrix:

Ht = B′Σf,tB +Σu,t with B ..= [β1, . . . , βN ] .

A static version assumes Σf ≡ Σf,t and Σu,t ≡ Σu, which implies Ht ≡ H .



Different Versions

In all versions:

B is estimated by OLS, one asset at a time, yielding B̂ ..= [β̂1, . . . , β̂N ]
and residuals ût

..= (û1,t, . . . , ûN,t)
′

Σ̂f is the sample covariance matrix of the {ft} and Σ̂f,t ≡ Σ̂f

Use K = 1 or K = 5 Fama-French factors

Exact Factor Model (EFM):

Static model that assumes Σu is diagonal

Σ̂u is the diagonal part of the sample covariance matrix of the {ût}

Approximate Factor Model (AFM-NL):

Static model that assumes nothing about Σu

Σ̂u is obtained by applying nonlinear shrinkage to the {ût}

Approximate Factor Model (AFM-DCC-NL):

Dynamic model that assumes nothing about Σu,t

Σ̂u,t is obtained by applying DCC-NL to the {ût}



Averaged Forecasting

Problem:

In our backtest analysis, we use daily data

But we update the portfolios only once a month,

that is, once every 21 trading days

This creates a certain ‘mismatch’ for dynamic models

Solution of De Nard, Ledoit, and Wolf (2021, JFEC):

Forecast the covariance matrix separately for all 21 trading days

of the upcoming month

Then average these 21 forecasts and use the averaged matrix for

portfolio selection

To this end, we use standard proposals from the literature to forecast

(i) conditional volatilities based on GARCH(1,1) dynamics

(ii) conditional correlation matrices based on DCC-NL dynamics
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Data & Portfolio Rules

Stocks:

Download daily return data from CRSP

Period: 01/01/1973–12/31/2017

Observed factors:

Download return data for the five Fama-French factors

Available on the website of Ken French

Updating:

21 consecutive trading days constitute one ‘month’

Update portfolios on ‘monthly’ basis

Out-of-sample period:

Start out-of-sample investing on 01/16/1978

This results in 10,080 daily returns (over 480 ‘months’)



Data & Portfolio Rules

Portfolio sizes:

We consider N ∈ {100, 500, 1000}

Portfolio constituents:

Select new constituents at the beginning of each month

If there are pairs of highly correlated stocks (r > 0.95),

kick out the stock with lower market capitalization

Find the N largest remaining stocks that have

(i) a nearly complete 1260-day return history

(ii) a complete 21-day return future

Estimation:

Use previous T = 1260 days to estimate the covariance matrix



Performance Measures

All measures are based on the 10,080 out-of-sample returns

and are annualized for convenience.

Performance measures:

AV: Average

SD: Standard deviation

IR: Information ratio
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Problem & Solutions

Problem Formulation:

min
w

w′Htw

subject to w′
1 = 1

(where 1 is a conformable vector of ones)

Analytical Solution:

w∗ =
H−1

t 1

1

′H−1
t 1

Feasible Solution:

ŵ ..=
Ĥ−1

t 1

1

′Ĥ−1
t 1



Performance Measures

N = 100 N = 500 N = 1000

AV SD IR AV SD IR AV SD IR

Structure-Free Models

1/N 12.82 17.40 0.74 13.86 16.83 0.82 14.36 16.85 0.85
NL 11.94 11.74 1.02 11.91 8.63 1.38 12.28 7.45 1.65
DCC-NL 11.62 11.59 1.00 12.57 8.26 1.52 12.84 6.93 1.85

Exact Factor Models

EFM1 13.06 14.12 0.93 12.52 12.14 1.03 13.35 10.97 1.22
EFM5 13.02 12.68 1.03 12.68 10.97 1.16 12.90 9.72 1.33

Approximate Factor Models

POET 12.04 11.98 1.00 11.86 8.48 1.40 13.09 7.82 1.67
AFM1-NL 11.97 11.75 1.02 11.90 8.63 1.38 12.28 7.45 1.65
AFM5-NL 11.95 11.76 1.02 11.88 8.63 1.38 12.20 7.45 1.64
AFM1-DCC-NL 11.55 11.56 1.00 12.65 8.11 1.56 13.31 6.61 2.01
AFM5-DCC-NL 11.53 11.64 0.99 12.53 8.18 1.53 12.92 6.65 1.94

Note: In the columns labeled “SD”, the best numbers are in blue.



Performance Measures (N = 1000)

AV SD IR

Structure-Free Models

1/N 14.36 16.85 0.85
NL 12.28 7.45 1.65
DCC-NL 12.84 6.93 1.85

Exact Factor Models

EFM1 13.35 10.97 1.22
EFM5 12.90 9.72 1.33

Approximate Factor Models

POET 13.09 7.82 1.67
AFM1-NL 12.28 7.45 1.65
AFM5-NL 12.20 7.45 1.64
AFM1-DCC-NL 13.31 6.61 2.01
AFM5-DCC-NL 12.92 6.65 1.94



Outline

1 Introduction

2 Covariance Matrix Estimation

Classification of the Literature

Class of Estimators

Loss Function and Feasible Estimator

Extension to Dynamic Models

Extension to Factor Models

3 Backtest Analysis

Global Minimum Variance Portfolio

Markowitz Portfolio with Signal

4 Conclusion



Problem & Solutions

Problem Formulation:

min
w

w′Htw

subject to w′mt = b and

w′
1 = 1

(where mt is a signal and b is a target expected return)

Analytical Solution:

w∗ = c1H
−1
t 1+ c2H

−1
t m

where c1 ..=
C − bB

AC −B2
and c2 ..=

bA−B

AC −B2

with A ..= 1

′H−1
t 1 B ..= 1

′H−1
t b and C ..= m′H−1

t m

Feasible solution ŵ replaces Ht with an estimator Ĥt.



Signal and Target Expected Return

For the signal we use momentum:

Return over the last 12 months, excluding the most recent month

Has been around for a long time and is non-controversial

Also can be computed from observed return data alone,

whereas most other signals need outside information

Simple-minded benchmark:

Equally invest in the top 20% of the stocks

Called EW-TQ for “equally-weighted top-quintile”

In the spirit of portfolio sorts à la Fama and French

Target expected return:

We take b to be the expected return of the EW-TQ portfolio

according to momentum



Performance Measures

N = 100 N = 500 N = 1000

AV SD IR AV SD IR AV SD IR

Structure-Free Models

EW-TQ 16.55 21.33 0.78 16.85 20.24 0.83 17.55 20.30 0.87
NL 14.76 14.16 1.04 14.54 10.10 1.44 15.00 8.75 1.71
DCC-NL 14.95 14.13 1.06 14.87 9.51 1.56 14.82 7.95 1.86

Exact Factor Models

EFM1 15.37 16.50 0.93 15.52 13.93 1.11 16.33 12.78 1.28
EFM5 15.22 15.49 0.98 15.76 12.80 1.23 15.94 11.39 1.40

Approximate Factor Models

POET 14.53 14.33 1.01 14.28 10.02 1.43 15.45 9.10 1.70
AFM1-NL 14.79 14.16 1.04 14.52 10.09 1.38 15.00 8.75 1.72
AFM5-NL 14.78 14.17 1.04 14.48 10.10 1.44 14.90 8.75 1.70
AFM1-DCC-NL 14.69 14.02 1.05 15.24 9.46 1.61 15.76 7.84 2.01
AFM5-DCC-NL 14.58 14.09 1.04 14.97 9.58 1.56 15.28 7.91 1.93

Note: In the columns labeled “IR”, the best numbers are in blue.



Academia vs. Real Life

Our ‘simple-minded’ back-tests are meant to identify the best covariance

matrix estimator, not to evaluate realistic trading strategies.

Real-life portfolio managers face many additional constraints concerning

gross-exposure, factor exposure, trading costs, etc.

But they still benefit from using the best covariance matrix estimator.



Back-Tests vs. Monte Carlo Studies

Some consider Monte Carlo studies more informative than back-tests.

Often it is said that “history will not repeat itself”, but then the DGP

of the Monte Carlo study is calibrated based on historical inputs . . .

Monte Carlo studies offer flexibility to make one’s own methods

look good compared to other methods.
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Conclusion

Naïve benchmarks based on sorting and equal-weighting

can be outperformed easily, at least when investing in individual stocks.

Dynamic covariance matrix estimators outperform static ones.

Injecting factor structure pays off, but no need to go beyond

the market factor if the residual covariance matrix is handled smartly.

This is good news for investors outside of the US.

The overall winner is AFM1-DCC-NL:

Uses only the market factor

Models the residual covariance matrix with DCC-NL



The Goldilocks Principle Has Universal Appeal!
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